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Supplementary Note 1: System parameters

We summarize qubit and resonator frequencies, as well as typical qubit lifetimes in the tables
below. Each resonator has a Purcell filter centered at the same frequency.

Q0 Q1 Q2

Frequency (MHz) 5355 5182 5392
Anharmonicity (MHz) 307 310 310
T1 (µs) 22 23 23
T ∗2 (µs) 18 26 20
T echo2 (µs) 31 31 35

Supplementary Table 1: Qubit parameters

R0 R1

Frequency (MHz) 6314 6405
Linewidth, κ (kHz) 636 810
Dispersive shift, χ (MHz) 2.02 2.34
Quantum efficiency, η 0.62 0.56
Designed Purcell filter Q 30 30

Supplementary Table 2: Resonator parameters
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Supplementary Note 2: Steady state dephasing

Here we derive relative dephasing rates for two qubits in a dispersive parity measurement using a
classical analysis of the resonator steady states. The measurement dephasing rate is proportional to
the distinguishability of resonator responses when the coupled qubits are in different eigenstates[1].
We set the probe frequency on resonance with the cavity when qubits are in the single-excitation
subspace and assume that χ� κ. We also assume the external cavity coupling is much larger than
the internal cavity loss, so the cavity responds with the following scattering parameter:

S(f0 := χ 〈Z0 + Z1〉) =
−2f0 + iκ

−2f0 − iκ
(S.1)

Odd parity states are perfectly indistinguishable. The distinguishability between states of opposite
parity is

D01,00 = |S(0)− S(2χ)|2 =

∣∣∣∣(−1)− −4χ+ iκ

−4χ− iκ

∣∣∣∣2 ≈ 4 (S.2)

With z ≡ 4χ+ iκ, the distinguishability between the two even parity states is:

D11,00 = |S(−2χ)− S(2χ)|2 =

∣∣∣∣4χ+ iκ

4χ− iκ
− −4χ+ iκ

−4χ− iκ

∣∣∣∣2
=
∣∣∣z
z̄
− z̄

z

∣∣∣2 =

∣∣∣∣z2 − z̄2

|z|2

∣∣∣∣2 =

∣∣∣∣(z + z̄)(z − z̄)

|z|2

∣∣∣∣2
=

(
(8χ)(2κ)

16χ2 + κ2

)2

≈
(
κ

χ

)2

(S.3)

From these equations, we get the following relative dephasing (Γ) and measurement rates (Γm)
between states of different parity and states of even parity:

Γ01,00

Γ11,00

=
Γm01,00

Γm11,00

≈ 4χ2

κ2
(S.4)

Supplementary Note 3: Dynamic Dephasing

When the resonator is not at steady state, one can have significantly increased dephasing rates after
a parity flip. Here we will consider the effect of a bit flip error taking an odd parity qubit state to
an even parity state while the parity measurement is on. In this case, the measurement tone is on
resonance with the cavity and the cavity field will initially be in a steady state α0. When the qubit
parity is flipped from odd to even, the cavity evolves as two copies, one for each even parity basis
state (α00 and α11). As a simplifying approximation, we assume the measurement tone is turned
off at the moment the parity changes as to capture just the transient dynamics. There are two
equivalent methods[1] to calculate the net dephasing ζ . The first can be obtained by integrating the

2



rate at which information leaves the cavity, Γmφ = κ
2
|α00 − α11|2. The second can be obtained by

integrating the rate at which the cavity dephases the qubit, Γφ = 4χ Im[α00α
∗
11], with 4χ being the

frequency difference between the |00〉 resonance and the |11〉 resonance. Here we use the second
method to simplify the calculation. We work in the rotating frame of the odd-parity resonance and
define k ≡ κ/2− 2iχ to get two cavity equations, one associated with each basis state:

α̇00 =
(

2χi− κ

2

)
α00

α̇11 =
(
−2χi− κ

2

)
α11

(S.5)

α00(t) = α0e
−kt

α11(t) = α0e
−k̄t (S.6)

ζ =

∫ ∞
0

4χ Im [α00α
∗
11] dt = 4χ Im

[∫ ∞
0

α00α
∗
11dt

]
= |α0|2 4χ Im

[∫ ∞
0

e−2ktdt

]
= |α0|2 4χ Im

[
1

2k

]
= |α0|2 4χ Im

[
2k̄

|2k|2

]
= |α0|2

16χ2

κ2 + 16χ2
≈ |α0|2

(S.7)

Therefore, the magnitude of the final coherence between |00〉 and |11〉, |ρf00,11|, will be dephased
from the initial coherence between |01〉 and |10〉, |ρi01,10| :∣∣∣ρf00,11

∣∣∣ = e−ζ
∣∣ρi01,10

∣∣ = e−|α0|2
∣∣ρi01,10

∣∣ (S.8)

Supplementary Method 1: Tomographic reconstruction

We use the parity resonators to perform qubit tomography. However, due to the nature of the parity
condition, not all states are distinguishable by this measurement. To perform tomography, we use
single qubit pulses to map each three-qubit Pauli eigenstate to |000〉 and then measure both res-
onators on their respective |00〉 resonance. We then measure the probability that full qubit system
is in the ground state, which corresponds to reading out both resonators as 0. We additionally
include data into the tomography analysis if one of the resonators reads out 1 and the other reads
out 0, since we know the final state to be in either |100〉 or |001〉 depending on which resonator
reads 1. Using this information, we construct partial Pauli expectation values such as 〈X+Y −I〉,
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with P+, P− being the plus and minus projectors for a particular Pauli P ∈ {X, Y, Z} such that
P = P+ − P−. We then apply readout correction on these probabilities to mitigate the effects
of readout infidelity. From this corrected data taken over many tomographic sequences, we can
reconstruct full Pauli expectation values such as 〈XY I〉. When reconstructing logical coherences,
we only measure in the X and Y bases. When reconstructing populations, we only measure in the
Z basis.

Supplementary Method 2: Ramsey heralding

Qubits 0 and 2 demonstrate a strong temporal bistability in qubit frequency, with a splitting of
about 80 kHz and a typical switching time on the order of .1–10 s. When taking data to reconstruct
logical coherences, we include five extra sequences in our AWG sequence table, each consisting
of five repeated restless Ramsey measurements with free precession times of 6 µs. With a typical
initial sequence length of 64 and a repetition rate of 100 µs, the qubit’s frequency state is sampled
every 7 ms, allowing us to herald data runs to only include data from runs when the qubits have a
particular frequency.

Supplementary Method 3: Photon number calibration

To calibrate the number of photons in our resonator at steady state, we first calibrate the quan-
tum efficiency of each chain by measuring the total dephasing and the SNR of a variable am-
plitude readout pulse[2]. We then measure the steady state measurement rate of an odd ver-
sus even parity state by measuring steady state SNR increase between an even and odd state.
Using the relation between measurement rate and measurement induced dephasing[1], we find
Γm = 2ηΓmφ = κη|α00 − α01|2 ≈ κηn̄. Here, Γm is the measurement rate and Γmφ is the mea-
surement induced dephasing rate. We also have approximated the even parity state as having a
much lower average photon number than the odd parity state, which is the case when measuring
on the odd parity resonance with χ� κ. Using this method we determine the steady state photon
numbers in R0 and R1 to be .7 and .6 respectively.

Supplementary Figures
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Supplementary Figure 1: Cryogenic wiring diagram. The Josephson parametric amplifiers (JPAs)
operate in reflection, and additionally have off chip coils not shown. The JPAs also provide narrow-
band gain, so when the readout chains are combined at room temperature, the combined noise at
each cavity frequency is dominated by the noise amplified by that cavity’s JPA. Each supercon-
ducting coil has its leads connected by a small piece of copper wire on the sample box, forming a
low frequency (< 1 Hz) RL filter with the coil. The room temperature wiring is also shown, but
with linear elements (attenuators, amplifiers, filters, isolators) removed.
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Supplementary Figure 2: Extended data plot for Figure 3b. Pairs of qubits are flipped with vary-
ing time between flips. When different qubits are flipped, the red region represents the controller
detecting a flip on the third qubit, resulting in a logical error. When the same qubit is flipped twice,
the red region represents the probability of the controller not detecting a flip (which is not a logical
error). Blue and purple regions represent the probability of a single flip being detected. The orange
region represents the probability of the controller detecting some other sequence of flips. Dotted
lines represent the dead time, when the red probability matches the green probability.
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Supplementary Figure 3: Extended data plot for Figure 3c. Effective T1 for all four definite
parity subspaces are measured and fit to an exponential. Red traces are taken with feedback off.
Blue traces are taken with feedback on. The black dotted line represents the lifetime of a bare qubit
(24 µs).
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