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The quantum Zeno effect is the suppression of Hamiltonian evolution by repeated observation, which
pins the system to an eigenstate of the measurement observable. Using measurement alone, control of the
state can be achieved if the observable is slowly varied, so that the state tracks the now time-dependent
eigenstate. We demonstrate this using a circuit-QED readout technique that couples to a dynamically
controllable observable of a qubit. Continuous monitoring of the measurement record allows us to detect an
escape from the eigenstate, thus serving as a built-in form of error detection. We show this by postselecting
on realizations with high fidelity with respect to the target state. Our dynamical measurement operator
technique offers a new tool for numerous forms of quantum feedback protocols, including adaptive
measurements and rapid state purification.
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In the field of quantum control, two essentially distinct
resources are available for state manipulation. Application
of a time-dependent Hamiltonian via external driving
enables state preparation given a known initial state. In
contrast, measurement and dissipation provide a uniquely
quantum resource, owing to the stochastic backaction that
necessarily accompanies acquisition of information. In
addition, as measurement-based, or incoherent, control
[1] also extracts entropy from a system, this information
can be used to detect and correct for errors and imperfec-
tions. While incoherent and Hamiltonian controls are often
used in conjunction [2–8], full control is also possible using
measurement alone [9–15]. Measurement-only manipula-
tion has been demonstrated using a fixedmeasurement basis
[16], but unlike Hamiltonian-based methods, implementa-
tion of a variable or time-dependent measurement basis is
lacking. In addition to the basic science interest, and while
such control cannot replace coherent Hamiltonian control,
such a capability is a versatile additional degree of freedom
for measurement-based protocols. For example, rapid state
purification using feedback requires the ability to continu-
ously change the measurement basis [5]. Hamiltonian free
state preparation feedback protocols become possible with
such capabilities [10,11,17]. For multiqubit systems, local
operations generate nontrivial and nonlocal evolution by
projecting part of the system subspace, in a process referred
to as quantum Zeno dynamics [18]. Dynamically and
adiabatically changing the projected subspace in such
systems is an unexplored concept that is enabled by the
type of control presented here.
In this Letter, we present a method to dynamically tune

the measurement operator in a circuit-QED system and

use this capability to deterministically and incoherently
manipulate the state of an effective qubit. Our method relies
on the suppression of coherent evolution via strong
measurement, known as the quantum Zeno effect (QZE),
which has been observed in many systems [19–30]. As the
Zeno effect essentially holds the quantum state in a
measurement eigenstate, we are able to drag the state using
measurement alone by changing the operator at a rate slow
compared to the rate of measurement-induced dephasing
ΓD [12–15]. This method does not require the measurement
record or feedback to achieve control. However, by
monitoring the record with a quantum-limited Josephson
parametric amplifier (JPA), we characterize the dynamics
and verify good agreement with theory. In the fast-driving
limit, where the Zeno effect breaks down, we observe a
characteristic arcing effect in which the state maintains
relatively high purity, even as it transitions to the unwanted
measurement eigenstate. Using the measurement record to
postselect, we show that we can achieve high fidelity with
respect to the target state, albeit at the expense of lower
success probability. Thus, measurement serves a dual role,
both controlling the state and providing real-time informa-
tion on its performance.
Our system setup is similar to the one used in Ref. [31]. It

consists of a transmon [32,33] qubit dispersively coupled to
the modes of a 3D superconducting cavity. We apply a tone
resonant with the qubit frequency that drives Rabi oscil-
lations on the qubit at a frequency of ΩR, so that its
Hamiltonian becomes that of an effective qubit with energy
splitting determined byΩR=2π ¼ 40 MHz. The new energy
eigenstates in this dressed basis are j�i ¼ ðjgi � jeiÞ= ffiffiffi

2
p

,
where jgi and jei are the ground and excited states of the bare
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qubit, respectively. It is within the frame of this effective
qubit that we demonstrate the ability to drag the state. We
then apply a pair of sideband tones detuned above and below
the cavity frequency by ΩR, as illustrated in Fig. 1, which
gives us the following Hamiltonian for our effective low
frequency qubit [31]

H ¼ χā0
2

ðaþ a†ÞσδðtÞ; ð1Þ

where ā0 is the amplitude of sideband tones, a and a† are the
cavity ladder operators, and χ is the qubit dispersive
frequency shift. The measurement operator σδðtÞ ≡
σx cos δðtÞ þ σy sin δðtÞ is set by the relative sideband phase
δðtÞ. This Hamiltonian is a resonant cavity drive, where the
displacement of the cavity field depends on the qubit state
along the σδ axis. Detecting the cavity output field yields a
measurement of the qubit at a rateΓM ¼ ΓDη ¼ 2χ2ā20η=κ in
the σδ basis [34], where κ is the cavity mode decay rate and
η ¼ 0.49 is the detection quantum efficiency. We detect the
cavity displacement using a JPA operated in phase-sensitive
mode, choosing the amplified axis to align with the
displaced quadrature, as illustrated in Fig. 1(b). The full
system calibration procedure can be found in Ref. [31].

We start with the nondriven transmon qubit in the ground
state, which, once the Rabi drive is turned on, corresponds to
the jy ¼ þ1i state of the effective qubit. We then contin-
uously measure the effective qubit while changing the
measurement axis. The Rabi drive is ramped down and is
followed by one of seven pulses fI; xπ=2;−xπ=2; yπ=2;−yπ=2;
xπ;−xπg and a strong projective measurement for tomog-
raphy. The dephasing rate during the continuous measure-
ment is fixed and set to ΓD=2π ¼ 0.13 MHz. We repeat the
runs for measurement rotation speeds, v ¼ _δðtÞ=2π, relative
to the effective qubit spanning from v ¼ 0.01 to 0.18 MHz
and perform tomography at intervals from 1 to 5 μs for each
rotation speed. The thermal population of the transmonqubit
was about 15%, so before each measurement, we perform a
1 μs projectivemeasurement heralding the preparation state.
We also use the projective readout at the end to ensure that
the transmon qubit is still within the two-level subspace after
the run; out of the runs that passed the heralding, less than
2% were found to be outside the two-level subspace. The
tomography for the ensemble average behavior is shown in
Fig. 2(a). The colored dots show the tomography from
∼20 000 traces per dot, and the lines are theory for the
following parameters: initial state with hyi ¼ 0.94,
hxi ¼ hzi ¼ 0, ΓD=2π ¼ 0.13 MHz, and an additional pure
dephasing, which we attribute mainly to instabilities in the
Rabi drive, at a rate Γϕ=2π ¼ 0.005 MHz (corresponding to
the decay time of the Rabi oscillations of the bare qubit). The
statistical errors are negligible and the small discrepancy of

(a)

(b) (c)

FIG. 1. (a),(b) Schematic of the main components in the
experimental setup. (a) A transmon qubit in a 3D aluminum
cavity. A weakly coupled port is used to simultaneously input
three microwave tones; a Rabi drive at ωq is used to create an
effective low frequency qubit at ωq−eff=2π ¼ ΩR=2π ¼ 40 MHz
(orange), while two sideband tones resonantly couple the
effective qubit to the cavity (green). (b) The output signal is
amplified with a JPA and demodulated at room temperature with
an IQ mixer. The signal and JPA phase are aligned along the Q
quadrature. The red and blue ellipses illustrate the distribution of
results for each of the two possible detector outputs, with respect
to the measurement operator. (c) Illustration of the XY plane in
the Bloch sphere of the effective qubit. The green arrow denotes
axis of the time-dependent measurement operator σδðtÞ.

(a) (b)

FIG. 2. (a) Average state behavior of a qubit being dragged at
varying rotation speeds v. Dots are tomography results in the XY
plane of the Bloch sphere after the fixed time indicated in the
legend and for rotation speeds from 0.01 to 0.18 MHz in steps of
0.01 MHz. Lines are theory plots with the experimental param-
eters given in the main text. (b) Two example selected trajectories
for a dragging rate of v ¼ 0.05 MHz and a duration of 5 μs: one
illustrating successful dragging of the qubit state, whose state
remains pure, while the other undergoes a jump and continues to
get dragged along the opposite pole. Colors in the figure
correspond to time evolution. The colored lines outside the Bloch
sphere indicate the time axis going fromblue for t ¼ 0 μs to red for
t ¼ 5 μs; these illustrate the position of the measurement axis as
function of time. The same colors correspond to the time evolution
of the two trajectories shown.
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the tomography data with theory is most likely due to
systematic drifts of the measurement rate (amplitude of the
sideband tones) and leakage tone at the cavity mode
frequency (LO leakage; see methods in Ref. [31]).
We now focus on the conditional dynamics of the state as

it is being dragged. For this, we reconstruct the quantum
trajectories [31,35] from the continuous traces (see also the
Supplemental Material [36], which includes Refs. [37–
39]). Our system is in a regime where κ ≫ ΓD, in which we
can infer the diffusive nature of the quantum jumps.
Because we operate the JPA such that it amplifies the
optimal (informational) quadrature, the qubit evolution due
to the measurement is not affected by phase backaction
[34,40]. Then the dynamics of the system can be described
by the following master equation, in Itô form [1,41]

dρ ¼ ΓD

2
L½σδðtÞ�ρdtþ

ffiffiffiffiffiffiffiffiffi
ΓD

2
η

r
H½σδðtÞ�ρdW; ð2Þ

where L½X�ρ ¼ XρX† − ðX†Xρþ ρX†XÞ=2 is the Lindblad
dissipation superoperatorH½X�ρ¼XρþρX†−hXρþρX†iρ,
and dW is a Gaussian distributed variable with a variance dt
[42], which is itself extracted from the measurement record.
We use the positive operator valued measure that generates
this equation with additional corrections to account for
extra dephasing on the effective qubit (at a rate Γϕ) to
reconstruct the trajectories as a function of time from the
continuous traces (see Supplemental Material [36]).

Figure 2(b) shows two example trajectories for a dragging
velocity of v ¼ 0.05 MHz, with one trajectory showing a
state that was successfully dragged, while the other
illustrates a “quantum jump.” Note that, after the jump,
the measurement process continues to drag the state on the
opposite side of the Bloch sphere.
The dynamics of the whole ensemble can be visualized

by plotting the distribution of the state of the qubit in the
Bloch sphere as function of time, as shown in Fig. 3. There
are several prominent qualitative features in these plots. As
expected, the rate at which the qubit jumps is larger for
faster dragging velocities; this can be seen in the 2D
histograms in Fig. 3(a), where at later times the escaped
population is larger for faster velocities. Strikingly, these
quantum jumps always diffuse in an arc that extends
opposite to the direction of rotation. This can be understood
from the form of the backaction, which is zero at the poles
of the measurement axis and maximal in between. Hence,
when the state gets “pushed forward” (that is, in the
direction of the rotation) by the backaction, it is pushed
toward a region of lower backaction. At the same time, it
cannot go past the measurement axis because the back-
action goes to zero at the pole. On the other hand, if the
state gets “pulled back” by the backaction, it is toward a
region of higher backaction, thus having an increased
probability of “escaping” and undergoing a transition to
the other side of the Bloch sphere, i.e., a quantum jump.
Because of the relatively high quantum efficiency of our

(a)

(c)

(b)

FIG. 3. (a) Ensemble histograms of the qubit state as function of time, showing the XY plane of the Bloch sphere, for two example
velocities of 0.02 and 0.04 MHz, with ΓD=2π ¼ 0.13 MHz. The state is initialized at jy ¼ þ1i. The measurement axis is represented
by white lines, while the theoretically calculated natural jump axis is indicated by red lines. The white arrow indicates the direction of
rotation. The ensemble average as a function of time in the frame of the jump axis is shown perpendicular to the jump axis (b) and along
the jump axis (c). Data are generated by averaging the trajectories as a function of time for the dragging velocities in the Zeno regime
ΓD ≥ 2jΩj. Black dashed lines show theoretical results using the experimental parameters given in the main body.
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system, the state remains close to the surface of the Bloch
sphere and trajectories that jump arc out before arriving at
the other side.
A consequence of the arcing feature in the dynamics is

the lagging of the average of the state behind the meas-
urement axis. For our specific experiment, the ensemble
averaged dynamics can be solved analytically by going into
a frame rotating at the dragging velocity v, where the
measurement axis is fixed and the qubit is driven by the
Hamiltonian H ¼ ðΩ=2Þσz, with Ω ¼ 2πv. In this meas-
urement-axis frame the average qubit state evolves accord-
ing to

dρ ¼ −i
Ω
2
½σz; ρ�dtþ

ΓD

2
L½σy�ρdt; ð3Þ

where the measurement axis is now fixed along the y
direction, and for simplicity, we drop the negligible purely
dephasing term Γϕ. The constraints Tr½ρ� ¼ 1 and ρ ¼ ρ†,
together with the initial condition and dynamics, reduce the
problem to one of two variables. We convert the master
equation to an equation for the Bloch vector components
x ¼ Tr½σxρ� and y ¼ Tr½σyρ�. Further details can be found
in the Supplemental Material [36]. The solutions display
two characteristically different regimes: (i) ΓD < 2jΩj
(oscillatory with λ� complex) and (ii) ΓD ≥ 2jΩj (over-
damped with λ� real). λ� ¼ ð−ΓD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
D − 4Ω2

p
Þ=2 and

V⃗� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ ðλ� þ ΓDÞ2

p
ðΩ; λ� þ ΓDÞ are the eigen-

values and eigenvectors, respectively. In the oscillatory
regime, the state of the qubit oscillates with respect to the
measurement axis and thus is not dragged by the meas-
urement. In the overdamped regime, or Zeno regime, the
oscillatory behavior vanishes and is replaced by exponen-
tial decay along the axes defined by the eigenvectors V�.
As ΓD → ∞, the eigenvalue λþ goes to zero, which means
that, if the qubit starts near a pole of V⃗þ, it will remain
pinned to it for an arbitrarily long time. The slow decay for
ΓD < ∞ can be attributed to quantum jumps between the
poles of V⃗þ. In most realizations of the experiment, these
jumps can be observed. The jump axis is identified with the
direction in which the damping rate is smallest, since the
fast damping in the orthogonal direction aligns the poles of
the jump with the slow axis.
Since λþ ≥ λ−, the jump axis is the eigenvector V⃗þ, with

a characteristic angle relative to the measurement axis

θ ¼ arctan

�
2Ω

ΓD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
D − 4Ω2

p
�
: ð4Þ

This angle characterizes the direction along which the
population of the qubit concentrates and is only defined
within the Zeno regime, where dragging occurs. In such
regime, a qubit state close to a pole of the jump axis
eventually jumps to the other pole at a rate γJ ¼ jλþj=2.
Note that, for slow dragging velocities, in the limit

ΓD ≫ 2jΩj, the jump axis aligns with the measurement
axis and the jump rate converges to the familiar form
Ω2=ð2ΓDÞ [23,34,43].
Figure 3(a) illustrates the jump axis, indicated by a red

line, lagging behind the measurement axis at an angle θ.
Moreover, Figs. 3(b) and 3(c) show good agreement
between theoretical and experimental ensemble dynamics
in the frame of the jump axis for dragging velocities in the
Zeno regime. We can see the exponentially decaying
behavior in the direction perpendicular to the jump axis,
indicating that the population is aligning with it. The
lagging angle between the average state and the measure-
ment axis can be understood to arise from competition
between the stochastic backaction and rotation.
Without observing the measurement outcome, there is an

optimal initial measurement axis and rotation velocity that
maximizes the fidelity with respect to a target state [15].
However, as the magnitude of the backaction depends on
the measurement outcome, its relative size can be inferred
from the measurement record. As a larger positive meas-
urement outcome induces a larger change toward the
measurement axis, one can use this effect to postselect
on trajectories in which the state was pulled closer to the
measurement axis. In Fig. 4, we show fidelity with respect
to the target measurement eigenstate for various postse-
lection criteria. One can see that the more aggressively one
postselects on the integrated voltage, the higher the result-
ing fidelity. The fidelity for the most negative postselec-
tions drops due to rare fluctuations that average away in the
signal, but still have a residual effect on the state evolution;
this is further detailed in the Supplemental Material [36].
Thus, measurement allows us not only to drag the state, but
also to monitor its dynamics and herald high fidelity. The
above dynamics suggest that given a “runaway” state, or an
error, the measurement axis could rotate and drive it
back via a feedback protocol, achieving improved control.

FIG. 4. Fidelity as function of postselection threshold. Post-
selection is performed with respect to the average voltage of the
detector signal. Each trace corresponds to a fixed dragging rate
and shows fidelity with respect to the eigenstate of the meas-
urement operator after rotating for 4 μs. The X axis is the
normalized postselection threshold, normalized such that �1
corresponds to the average values of the signal for the �1
eigenstates of the measurement operator.
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A feedback protocol achieving such a result has been
shown [17]. The idea is to feedback on the measurement
axis such that it is always halfway between the current state
and the target state.
This dynamical control of the measurement operator

enables novel capabilities for qubit control, such as the
incoherent control demonstrated here, improved incoherent
control with feedback [17], rapid state purification
[5,44,45], and adaptive measurements [1,46]. This meas-
urement scheme also generalizes to multilevel systems. In
such multilevel settings, fast measurement rates of certain
operators restrict the system to evolve within a particular
subspace of the total Hilbert space, which is known as
quantum Zeno dynamics [47–49]. Such restriction has been
recently shown to enable universal quantum computation
within that subspace [50]. Changing these subspaces
dynamically through the evolution of the monitored oper-
ators is an avenue that has yet to be explored.
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